The compound you're asking about, **1-[(6-methoxy-2-furo[2,3-b]quinolinyl)-oxomethyl]-4-piperidinecarboxylic acid ethyl ester**, is a complex organic molecule with a rather long and descriptive name. It's important to understand that this molecule is likely a **synthetic compound**, specifically designed for research purposes. It is not a naturally occurring molecule.
To understand its importance, we need to break down the structure and potential applications:
**Structure:**
* **Furo[2,3-b]quinoline:** This is a fused heterocyclic ring system. Furan is a five-membered ring containing oxygen, and quinoline is a fused ring system containing nitrogen. The 2,3-b notation refers to the specific way the furan ring is attached to the quinoline ring.
* **6-methoxy:** This indicates a methoxy group (CH3O-) attached to the sixth carbon atom of the quinoline ring.
* **-oxomethyl:** This is a ketone group (-C(=O)-CH2-) attached to the nitrogen atom of the quinoline ring.
* **4-piperidinecarboxylic acid ethyl ester:** This is a piperidine ring (a six-membered ring with a nitrogen atom) with a carboxyl group (-COOH) attached to the fourth carbon atom and an ethyl ester group (-COOC2H5) attached to the carboxyl group.
**Potential Applications:**
Given its complex structure, this compound is likely being investigated for its potential biological activity. Here are some possibilities:
* **Pharmaceutical research:** This molecule might be a lead compound for developing new drugs. The fused ring system and functional groups present a variety of potential binding sites, which could interact with specific biological targets.
* **Target validation:** The compound could be used to validate the role of specific proteins or enzymes involved in disease processes. It could potentially act as an inhibitor or activator of these targets.
* **Medicinal chemistry:** This molecule might be a starting point for developing new synthetic methods or exploring the chemical space of related compounds.
**Importance:**
The importance of this specific compound relies on its potential to contribute to research in the aforementioned areas. It's crucial to remember that just because a compound has a complex structure and is being investigated, it doesn't mean it will necessarily lead to a successful drug or discovery.
**To understand the true significance of this compound, you'd need to consult the research publications where it's mentioned. This would provide information on its intended purpose, specific biological activity, and any promising results.**
ID Source | ID |
---|---|
PubMed CID | 3244985 |
CHEMBL ID | 1468202 |
CHEBI ID | 114441 |
Synonym |
---|
ethyl 1-{6-methoxyfuro[2,3-b]quinoline-2-carbonyl}piperidine-4-carboxylate |
AKOS001816522 |
MLS001367733 |
ethyl 1-[(6-methoxyfuro[2,3-b]quinolin-2-yl)carbonyl]piperidine-4-carboxylate |
smr000026424 |
MLS000091900 |
CHEBI:114441 |
ethyl 1-(6-methoxyfuro[2,3-b]quinoline-2-carbonyl)piperidine-4-carboxylate |
HMS2349O03 |
CHEMBL1468202 |
REGID_FOR_CID_3244985 |
HMS3440A16 |
1-[(6-methoxy-2-furo[2,3-b]quinolinyl)-oxomethyl]-4-piperidinecarboxylic acid ethyl ester |
Q27195843 |
sr-01000126400 |
SR-01000126400-1 |
way-330322 |
Class | Description |
---|---|
organic heterotricyclic compound | An organic tricyclic compound in which at least one of the rings of the tricyclic skeleton contains one or more heteroatoms. |
organonitrogen heterocyclic compound | Any organonitrogen compound containing a cyclic component with nitrogen and at least one other element as ring member atoms. |
oxacycle | Any organic heterocyclic compound containing at least one ring oxygen atom. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, HADH2 protein | Homo sapiens (human) | Potency | 25.1189 | 0.0251 | 20.2376 | 39.8107 | AID893 |
Chain B, HADH2 protein | Homo sapiens (human) | Potency | 25.1189 | 0.0251 | 20.2376 | 39.8107 | AID893 |
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 31.6228 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 37.9330 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
acid sphingomyelinase | Homo sapiens (human) | Potency | 25.1189 | 14.1254 | 24.0613 | 39.8107 | AID504937 |
thioredoxin reductase | Rattus norvegicus (Norway rat) | Potency | 79.4328 | 0.1000 | 20.8793 | 79.4328 | AID588456 |
BRCA1 | Homo sapiens (human) | Potency | 5.0119 | 0.8913 | 7.7225 | 25.1189 | AID624202 |
ClpP | Bacillus subtilis | Potency | 17.7828 | 1.9953 | 22.6730 | 39.8107 | AID651965 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 5.1735 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 32.6427 | 0.0008 | 11.3822 | 44.6684 | AID686978 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 22.3872 | 0.1800 | 13.5574 | 39.8107 | AID1460 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 28.1838 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
P53 | Homo sapiens (human) | Potency | 11.2202 | 0.0731 | 9.6858 | 31.6228 | AID504706 |
NPC intracellular cholesterol transporter 1 precursor | Homo sapiens (human) | Potency | 3.5481 | 0.0126 | 2.4518 | 25.0177 | AID485313 |
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1 | Homo sapiens (human) | Potency | 28.1838 | 0.0018 | 15.6638 | 39.8107 | AID894 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 89.1251 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 10.3225 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
ras-related protein Rab-9A | Homo sapiens (human) | Potency | 3.1623 | 0.0002 | 2.6215 | 31.4954 | AID485297 |
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 | Homo sapiens (human) | Potency | 84.9214 | 0.4256 | 12.0591 | 28.1838 | AID504891 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 11.2202 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
muscleblind-like protein 1 isoform 1 | Homo sapiens (human) | Potency | 7.9433 | 0.0041 | 9.9625 | 28.1838 | AID2675 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |